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The transformation properties of vector multipole fields under 
a translation of coordinate origin 
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University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW, UK 

Received 14 February 1977 

Abstract. Addition theorems for Stratton's vector multipole fields are derived, exhibiting 
the results of Stein and Cruzan in a more compact and useful form. 

1. Introduction 

where j l ( k r )  is a spherical Bessel function and Crm(d, q) is a spherical harmonic 
normalized to Clo(O, 0) = 1 (Brink and Satchler 1968), have simple and well known 
transformation properties under rotation. Their transformation properties under 
translation of the coordinate frame to which they are referred have been given by Stein 
(1961) and Cruzan (1962) but their expressions are rather cumbersome. As these 
transformation properties are important in the discussion of many problems involving 
the electromagnetic field it seems useful to present them in a simple and more compact 
form. 

Stein (1961) and Cruzan (1962) adopted the procedure of writing 

V x r h m ( r )  =VxR+rm(r)+V~r'+r , ( r ) ,  
where r = R +r ' ,  expanding the scalar field +/,,,(r) in terms of &(R) and +l,m,(r') 
(Friedmann and Russek 1954) and simplifying the resulting expressions by the use of 
various recurrence relations obeyed by the spherical Bessel and harmonic functions. As 
might be expected such a method cannot fully exploit the group theoretical properties 
(Talman 1968) of the functions involved and their expressions are consequently rather 
cumbersome. Here we use a method which is an extension of that of Danos and 
Maximon (1965) to derive the transformation coefficients in a relatively concise and 
transparent form. We begin by reviewing the basic ideas and notation. 

The vector Helmholtz equation (Morse and Feshbach 1953) 

(v2 + k ' ) X ( r )  = o (2) 
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where X ( r )  is a vector field and k‘ is a positive real constant, occurs in the discussion of 
many physical problems. A solution of such a vector differential equation will be 
specified by a set of these quantities corresponding to the three components of the 
vector field in some coordinate system. It is only when the vector field is referred to a 
Cartesian coordinate system that each of the three vector components satisfies a scalar 
Helmholtz equation. When the differential equation is expressed in terms of any other 
coordinate system the resulting equations involving the components of the vector field 
in that coordinate system are coupled (Morse and Feshbach 1953) and are consequently 
much more difficult to solve. It is possible, however, by exploiting the invariance 
properties of the Helmholtz operator, to deduce the form of a set of vector solutions 
directly from a solution of the scalar equation. 

It is readily verified that the Helmholtz operator V2 + k 2  is invariant under both the 
translation and rotation of the coordinate frame with respect to which it is defined. 
Thus we may write 

VI2 e v’, r l = a + r  

and 
VI12 e v 2 ,  r r r  = Tr. 

Here a is a vector defining the translation of the coordinate frame while T is an 
orthogonal matrix defining its rotation. If f ( r )  is a scalar solution of the Helmholtz 
equation then 

(v’ + k ’ ) f ( r )  = (v” + k ’ ) f ( r )  = (V’ + k ’ ) f ( r  - U )  = o 
(V’+k2) f ( r )  =(Vl12+k2)f (r )=  ( V 2 + k 2 ) f ( i r )  

where Tis the transpose of T. Expandingf(r -a) andf( i r )  to first order in Taylor series 
we have 

( V 2 + k 2 ) ( f ( r ) - u .  V f ( r ) )  = 0 

(V’+k’ ) ( f ( r )  + en.  v x r f (r ) )  = 0 ;  

n is the unit vector along the axis of rotation; 6 is the angle of rotation about that axis. 
From these equations it follows that Vf(r) and V X rf(r) are solutions of (2). It is further 
readily verified that if X ( r )  is a divergenceless solution of (2) then V x X ( r )  is also a 
solution of that equation. In this way we have obtained a set of three vector solutions 
from one scalar solution. So far no mention has been made of the coordinate system to 
which these solutions are referred. The scalar Helmholtz equation, separated in the 
spherical polar coordinate system, has solutions of the form 

$/rm(r) = z / ( k r ) C / m ( e ,  CP) 

where now z l (kr )  is a spherical Bessel or Neumann function. These solutions have the 
unique merit of forming irreducible sets under the operator V X r and, furthermore, of 
having very special properties under the operator V. This is quite readily understood in 
the context of the theory of representations of the three-dimensional Euclidean group 
(Talman 1968). The functions $!,,,(r) play the role of partner functions to those 
representations of this group which are themselves irreducible representations of its 
rotation subgroup. As is discussed by Talman such partner functions obey sets of 
coupled differential equations whose forms are determined by the parametrization used 
to specify the group elements, and by the so called product function which maps the 
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group multiplication property onto the parameter domain. A lengthy and rather 
involved calculation, paralleling that of Talman's treatment of the two-dimensional 
Euclidean group, shows that for the translation subgroup, of which the components of 
the gradient operator are the infinitesimal generators, these equations take the form 

Here 6, are the spherical basis vectors given, in the Condon and Shortley phase 
convention, by 

and (E $.) is a Wigner 3j-symbol. 
If now the following recurrence relations for the spherical Bessel functions: 

are substituted in the result (3) one can deduce the so called gradient formula (Rose 
1957) 

(6) 
This discussion provides some insight into the relatively simple form of (6), which is 
obtained in conventional derivations (Rose 1957) only after a fairly complicated piece 
of Racah algebra. The corresponding equations for the rotation subgroup of which the 
components of V x r are the infinitesimal generators, are the shift operator equations 
familiar from angular momentum theory. In the notation used here these take the form 

(7) Vxrz , (kr)C,m(8 ,  c p )  = -i[l(/+ i ) ] ' / ' ~ , ( k r ) c ; ; ( e ,  Cp). 

It is shown in the appendix that 
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Consequently the vector fields (1) have simple analytic forms and provide a very 
convenient basis for the expansion of vector solutions of the Helmholtz equation and its 
inhomogenous analogues. 

2. The translation properties of the vector multipole fields 

As the vector fields (1) form a complete set for the expansion of solutions of the vector 
Helmholtz equation (Stratton 194 l), which is itself translationally invariant, we can 
now express a multipole field referred to one origin in terms of those referred to a 
translated origin. Furthermore the fields Lim ( r )  are sufficient to provide an expansion 
of an irrotational field while Mlm(r) ,  Nlm(r)  can provide an expansion of any 
divergenceless solution. Thus we may write 

(N M )  Nlm ( r )  = 1 ( A  / m : ! , m , ( R ) M , m , ( r ' )  + A  C$L@)Nrm4r')) 
l ',m' 

where r = r f  +R.  

identities hold: 
As NI, ( r )  = k-'V x MI, ( r )  is a translationally invariant relation the following 

A jz$,(R) = A ~ ~ F ~ ~ ( R )  E A f m , / , m f ( R )  
A ( M  N )  (N M )  (10) 

/ m , i s m , ( R )  = A / m : / , m , ( R )  - A I m , I , m , ( R ) .  

Of these coefficients the A!k;?L,(R) are obtained most readily. As the gradient 
operator is translationally invariant they can be obtained immediately from the 
translational properties of the scalar multipole field jr(kr)CIm (0, rp) (Friedmann and 
Russek 1954, Talman 1968): 

S 

l s l ' l  S 

)( 0 0 0 m m'-m -m' 
A$k$k,(R) = E  i'"'-'(- 1)m(21f+ 1)(2s + 1)( 
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The presence of the 3j-symbols in this expression limits the effective range of s to 
~ l - l ' ~ s s s l + l ' .  From (7) we have 

1 
P - -  

Using (1 1) this becomes 

x j , (kr ' )C , fm -t-&)', cp')is (kR ) c s t ( e R ,  ( P R  ). (14) 

The product of the two 3j-symbols can be recoupled to give 

1' 

where {i ;,;} is a Wigner 6j-symbol, which on substitution into (14) gives 

M,m(r)  = [1(1+ 1)(21+ I)]''* 
1 s 1' (-- I ) ' + ~ + "  i'+''--s+l 

l ' , s ' f  
&.m' 

x S & C l , m  r-p(d ', CP ' I jdkr')  csm -m , (OR,  (PR )is (kR 1. 
On identifying CT,'(O', cp') through its definition (4) this reduces to 

From the condition that Mlm(r)  is divergenceless we obtain, on using (A.2) and the 
recurrence relations for the spherical Bessel functions: 
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x C s m - m , ( e R ,  C P R ) ~ ~ ( ~ R ) .  (18) 

s runs over values for which the 3j-symbols do not vanish. 
It is also possible to expand the vector multipole fields derived from spherical 

Hankel, rather than Bessel, functions in one frame in terms of the fields M I m ( r ) ,  N / m ( r ) ,  
4, ( r )  in another, translated, frame at whose origin these fields will be regular. 
Whereas the expressions derived above converge for all values of Id( and /RI the 
corresponding series in the Hankel function case converge only when (r’(  < /RI. 

Defining the vector fields 

L i m ( r )  = V h r ( k r ) G m ( 8 ,  CP), M ; m ( r )  = V x rhi ( k r ) C [ m  (0, CP (1 a )  

NI, ( r )  = k-’V X M l m ( r ) ,  where h l ( k r )  is a spherical Hankel function of order 1, and using 
the addition theorem 

S 
h r ( k r ) C / , ( 8 , ( p ) =  / ‘ ,S. t  i 1 ~ ~ 1 ~ s ( - 1 ) m ( 2 1 f + 1 ) ( 2 s + 1 ) ( ~  0 0 ‘)( 0 m - t  t - m  
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and a ;m,l,m,(R) is given by the corresponding analogue of (18). The analogue of (12) is 

Appendix 

Here several properties of the vector multipole fields required in the foregoing 
discussion are derived. From the gradient formula we have 

Vpf(r)Gm (6, c p )  

= (-1)[+'-"(21+ 1)-1/2[[(/+ 1 ) ( 2 1 + 3 ) 1 1 / 2 ( - - - ) f ( r ) ~ , + , ~ + , ( e ,  1 d  c p )  r dr 

)I ( m + p  - p  - m  
1 - 1  1 

X 

where V, are the spherical components of the gradient operator defined as in (3, and 

Therefore 

which becomes on substituting (A.l )  and exploiting the orthogonality of the 3j -  
symbols, 

Similarly, starting from 

and noting that 



1086 R J A Tough 

we have, on substituting in (A.l) and changing dummy indices 

1 
m-U U - v  - m + v  

1 
m-U ( + - U  - m + v  

and evaluation of the 6j-symbol then gives 
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